

DIGIMAT-AM (Eklemeli İmalat) Modülü Kullanılarak Oluşturulan Parçanın MARC Analizi

HAZIRLAYAN

DOĞUKAN KAYMAK Yapısal Analiz Mühendisi

Tarih: 28/12/2023

Eklemeli İmalat ve Anizotropi

Eklemeli imalat, parçanın katmanlar halinde oluşturulduğu bir üretim sürecidir. Bu süreç sırasında, her katmanın malzeme özellikleri ve oryantasyonu parçanın anizotropisini etkilemektedir. Katmanlar arasındaki bağlantılar genellikle daha zayıf olabilir, bu da parçanın belirli yönlerde daha güçsüz veya daha dayanıklı olmasına neden olabilir. Tasarım ve işleme parametreleri, anizotropiyi yönetmek için önemlidir ve istenilen mekanik özellikleri elde etmek için dikkatli bir şekilde optimize edilmelidir.

İzotropik bir malzeme, mekanik özellikleri her yönde aynı olan bir malzemeyi temsil etmektedir. Genel olarak, (Sonlu Elaman Analiz) FEA yazılımları, bu tür malzemelerin davranışını modellerken izotropik modelleme yöntemini kullanmaktadır. Ancak, gerçek malzemeler genellikle anizotropik özelliklere sahiptir, bu da tam olarak izotropik bir model kullanmanın yetersiz olduğu anlamına gelmektedir. İşte bu noktada Marc-Digimat eşleştirmesi devreye girmektedir. Digimat, malzeme modellemesi için gelişmiş bir araçtır ve anizotropik malzeme davranışını daha iyi temsil edebilmektedir. Marc-Digimat eşleştirmesi, izotropik bir modelin anizotropik gerçekliği daha iyi yansıtmasına yardımcı olmaktadır. Bu, daha doğru analizlere ve malzeme davranışının daha iyi yansıtılmasına olanak tanımaktadır, bu da ürün tasarımı ve dayanıklılık açısından son derece önemli bir hale gelmektedir.

MARC Üzerinde Modelin Oluşturulması

Şekil 1' de görüldüğü üzere yapı 3 boyutlu ağ örgüsü kullanılarak Marc üzerinde model oluşturulmuştur.

Şekil 1: Marc Arayüzü - Oluşturulan Model.

Model' de görülen kalıplar için farklı, ortadaki parça için farklı bir malzeme modeli oluşturulup ayrı ayrı ataması yapılmıştır. Destekler için bir çelik malzeme kartı, ortadaki parça için bir polimer kartı **Şekil 2**' deki gibi oluşturulmuştur.

Şekil 2: Marc Arayüzü - Malzeme Kartları

Burada kullanan polimer malzeme tanımlaması, sonrasında eklemeli imalat simülasyonu sırasında kullanılacak olan polimer malzemesine göre yapılmıştır.

Şekil 3: Marc Arayüzü - Malzeme Ataması.

Ardından her parça için ayrı ayrı "Contact Body" ler oluşturulmuş ve **Şekil 5** ve **Şekil 6**' da görüldüğü üzere yapılar arasına "Touching Contact" ataması yapılmıştır.

Şekil 4: Marc Arayüzü - "Contact Body" ler.

Şekil 5: Marc Arayüzü - "Contact Interaction"

🔞 Contac	t Table	e Properties)	×
Name tab	e		View I	Mode	Entry	Matrix 💌					
·				Entr	ies —						
Show Vi	sible B	odies Only									
					Seco	nd					
First											
		Body Name			Body	Туре		1	2	3	
	1	body			Meshe	ed (Deformable,)		Т	Т	
	2	upper_die			Meshe	ed (Rigid)					
	3	bottom_dies			Meshe	ed (Rigid)					
Shown Entr	ies	Activate De	activate	Rem	ove	Detection	Remo	ve Ina	active		
	Рор	ulate / Manipulate			Full D	efault Contact	Touching	9	Glued		
				Ok	(

Şekil 6: Marc Arayüzü - "Contact Table"

Ardından, **Şekil 7**' de görüldüğü üzere modelin alt kısmında bulunan destek yapılarının eğimli duran yüzeyine x, y ve z yönlerinde hem dönme hem de yer değiştirme kısıtlaması uygulanmıştır.

Marc

Şekil 7: Marc Arayüzü - Sınır Koşulu

Şekil 4' te "upper die" için oluşturulan "contact body" kartı kullanılarak üstteki yapıya **Şekil 9**' da görüldüğü üzere **Şekil 8**' deki grafik kullanılarak -y yönünde bir yer değiştirme sınır koşulu uygulanmıştır.

Şekil 9: Marc Arayüzü - "Upper Die" Sınır Koşulu

Bir sonraki adım olarak, bir "static loadcase" **Şekil 10**′ da görüldüğü gibi oluşturuldu ve hem sınır koşulları hem de kontak atamaları bu "loadcase" e yapılmıştır. Toplam analiz süresi 5 saniye olarak verilmiş ve analizin 50 adımda çözülmesi istenmiştir.

🝓 Loadcase	Properties				>	×			
Name	lcase1								
Туре	Structural								
	static								
Loads		🔲 Inerti	a Relief						
Gaps									
Contact									
Global Reme	shing								
VCCT	Crack Propagation								
Crack Initiat	ors								
Design Cons	traints								
Supr	erplasticity Control								
5	olution Control								
Cor	ivergence Testing								
Num	erical Preferences								
Total Loadcase	Time 5	[1]	🔲 Termi	nation Crite	ria				
	S	tepping P	rocedure -						
Fixed O	Constant Time Step	0.1	[7]	# Steps	50	[-]			
C	User-Defined Time S	tep	Table						
Adaptive 🔘	Multi-Criteria				Parame	eters			
C	Arc Length				Parame	eters			
C	Temperature				Parame	ters			
Tir	ne Step Cut Back								
Automatic	Time Step Cut Back								
# Cut Backs A	llowed 10								
🗌 Remesh Di	uring Cut Back Proces								
Lo	adcase Results								
Deactivation	n / NC Machining								
🔲 Input File Te	ext 🛛 🔲 Include I								
Title									
Reset						ОК			

Şekil 10: Marc Arayüzü - "Loadcase"

Ardından, **Şekil 11**' de görülen "Structural Job" oluşturularak gerekli "Initial Loads" ve "Initial Contact" atamaları yapılmıştır.

						×	
Job Propertie	25					×	
Name j	ob1						
Type (Structural						
Linear Elastic Ar	nalysis						
🔘 Large Strain			🔘 Sma	all Strain			
			Loadcases				
Selected Clea	ar						
lcase :	L	Structural		static		Up Down	
Available							
						,	
LI Initial Loads		Design			Analysis	Options	
🔲 Inertia Relief		Cyclic	Symmetry	Job R	esults		
Contact Co	ntrol	Global	-Local		Job Par	ameters	
		Stea	dy State Rollir	ng			
Active Cra	Map T	emperature		Material Data File			
Crack Initiators		Model	Sections				
Deactivation DMIG		G Out			0	herk	
Input File Text	🔲 Ir	dude File					
Title						Run	
Depet						OK	
Reset	_					UK	

Şekil 11: Marc Arayüzü - "Structural Job"

Son olarak, **Şekil 12**' de görüldüğü üzere analizden "Equivalent Von Mises Stress" ve "Equivalent Elastic Strain" çıktıları istenmiştir.

🙀 Job Results										×
Name job1										
Type Structural										
Post File Output File					· Ve	rificati	ion	Contact	Nastran HDF5	Nastran OP2
Binary 🗌 HDF5 🗌 ASCII		Stati	Status File				Adams MNE	I-DEAS		
Default Style Increment Frequency 1	[-]		dia an		Additis Miki					10000
		E FIOV	Viines	- Force	ва	ance				
Selected Element O	antities -	Binai	ry/ASCII (Quantities				- Available Flem	ent Tensors	
Clear	uarruues					Filte	r (Available Lieff	encrensors	Clear
							· .			Clear
Quantity	Layers	10					Stress			
Equivalent Von Mises Stress	Default	t 🔻		Clr			Stress	in Preferred Sys	'	
Equivalent Elastic Strain	Default	t 🔻		Clr			Global	Stress		
					Available Element Scalars					
						Filte	r (Clear
					Equivalent Von Mises Stress					
					Mean Normal Stress					
					Equivalent Cauchy Stress					
Element Results All Points 🔻							· · · · ·			
Selected Nodal Qu	antities –									
Default 🔻										
Include Contact Glue Forces						Iterat	ive Res	ults Off		•
			OK							

Şekil 12: Marc Arayüzü - Analiz' den İstenilen Çıktılar

Oluşturulan model Marc üzerinde koşturulmuş ve aşağıdaki sonuçlar elde edilmiştir.

Şekil 13: Marc Arayüzü - "Equivalent Von Misess Stress" Dağılımı

Şekil 13' te görüldüğü üzere elde edilen maksimum "Equivalent Von Mises Stress" değeri 219.2 MPa' dır.

www.bias.com.tr

Marc

Şekil 14: Marc Arayüzü - "Equivalent Elastic Strain" Dağılımı

Şekil 14' te görüldüğü üzere elde edilen maksimum "Equivalent Elastic Strain" değeri 0.1405' dir.

DIGIMAT-RP ile Malzeme Ataması

İlk olarak **Şekil 15**' te görüldüğü üzere Marc üzerinde oluşturulan ".dat" uzantılı model dosyası DIGIMAT-RP içerisine aktarılmıştır.

Şekil 15: DIGIMAT-RP Arayüzü - Marc Modeli

DIGIMAT-RP içerisine model aktarımı yapıldığında, DIGIMAT sizlere bir model ağacı oluşturmaktadır. Bu ağacın içerisinde farklı malzemeler atanmış her parça sıralı bir şekilde bulunmaktadır. Malzemeyi atamak istediğiniz parçayı bu ağaç üzerinden seçtiğinizde ilgili parça kırmızı renge bürünmektedir. Bu sayede, diğer parçaların malzeme özelliklerini değiştirilmeden analize devam edilebilinmektedir.

Seçilen parçaya atanmak üzere DIGIMAT-MX veri tabanında bulunan hazır bir malzeme kartı **Şekil 16**' da görüldüğü gibi DIGIMAT-RP içerisine aktarılmıştır. Veri tabanından çekilen malzeme özellikleri DIGIMAT-AM modülü kullanılarak yapılan Eklemeli İmalat üretim simülasyonunda kullanılan filament malzemesiyle aynı malzeme olarak seçilmiştir.

HEXAGON	HxGN_GENERIC_FFF_PA12	PA12		HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_PA12	PA12		HEXAGON	elastic	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_PA12	PA12		HEXAGON	elastic	structural	*	MPa	23	50	
HEXAGON	HxGN_GENERIC_FFF_PA12	DA12		HEXAGON	J2_plasticity	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_ Show expe	rimental data file(s)		HEXAGON	J2_plasticity	structural	*	MPa	23	50	
HEXAGON	HxGN_GENERIC_FFF_		•	HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_		•	HEXAGON	elastic	structural	*	MPa	23	50	
HEXAGON	HxGN_GENERIC_FFF_ Export		•	HEXAGON	elastic	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_ Open in		•	HEXAGON	J2_plasticity	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_			HEXAGON	J2_plasticity	structural	*	MPa	23	50	
HEXAGON	HxGN_GENERIC_FFF_			HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_		•	HEXAGON	elastic	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_	ta		HEXAGON	J2_plasticity	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_	quit	%w	HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_CARBON_FIBER	CF	100%w	HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_GLASS_BEAD	GB	100%w	HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_GLASS_FIBER	GF	100%w	HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_ABS	ABS		HEXAGON	thermo-elastic	process	*	Pa			
HEXAGON	HxGN_GENERIC_FFF_ABS	ABS		HEXAGON	elastic	structural	*	MPa	23	0	
HEXAGON	HxGN_GENERIC_FFF_ABS	ABS		HEXAGON	J2_plasticity	structural	*	MPa	23	0	

Şekil 16: DIGIMAT-MX Arayüzü - Hazır Malzeme Kartının DIGIMAT-RP' ye Aktarılması

Aktarılan hazır malzeme kartının DIGIMAT-RP içerisindeki görünümü **Şekil 17**' de paylaşılmıştır.

Generic_PA12_dry_FFF		Ē				
Model Solution settings Advanced so	lver settings					
From Digimat-MX From file						
Composite Matrix (Matrix) PA12	Constitutive model	Elastoplastic				
Homogenization scheme	Density	1E-09				
	Consistent tangent stiffness Elastic symmetry	Isotropic				
	Young modulus	1500				
	Poisson's ratio	0.37				
	Yield stress	20				
	Isotropic hardening model	Exponential and linear laws				
	Isotropic hardening modulus	22				
	Isotropic hardening exponent	180				
	Isotropic nardening linear modulus	IU Spostral				
	souropic extraction method	Spectra				
Import curve from file Remove co	urve Snapshot Maximu	ım strain: 0.04				
XYZ direction	Macro Stress - Strain curve					
R ZXY direction						
2 ²						
stre						
ę.						
0 0,005 0,01	0,015 0,02 0, Strain 11	025 0,03 0,035 0,04				

Şekil 17: DIGIMAT-RP Arayüzü - Aktarılan Hazır Malzeme Kartı

Eklemeli imalat sırasında oluşturulacak modelin 3D yazıcıya aktarılmasını sağlayan koda "G-Code" adı verilmektedir. DIGIMAT-AM modülü de bu kodu kullanarak üretim simülasyonunu gerçekleştirmektedir. Bu çalışmada **Şekil 18**' de görüldüğü üzere "UltiMaker Cura" programı kullanılarak bu kod oluşturulmuştur.

Şekil 18: UltiMaker Cura Arayüzü - Model İçin G-Code Oluşturma

Daha sonrasında bu kod kullanılarak DIGIMAT-AM modülü üzerinden parçanın eklemeli imalat üretim simülasyonu gerçekleştirilmiş ve DIGIMAT-RP içerisine aktarılacak olan kalıntı gerilim çıktısı alınmıştır.

Hem "G-Code", hem de kalıntı gerilim verisi asıl modele haritalanmak üzere **Şekil 19**' da görüldüğü üzere DIGIMAT-RP modülüne aktarılmıştır.

Şekil 19: DIGIMAT-RP Arayüzü - Eklemeli İmalat Çıktılarının Aktarılması

Aktarılan bu veriler model içerisindeki parçaya **Şekil 20**' de görüldüğü üzere haritalanmıştır.

Şekil 20: DIGIMAT-RP Arayüzü - Verilerin Haritalanması

Bu adımdan sonra, "DIGIMAT-MARC Coupling" modeli Marc çözücüsü kullanılarak koşturulmuştur. Çıkan sonuçları aşağıdaki şekillerden inceleyebilirsiniz.

Şekil 21: Marc Arayüzü - "Coupling" Analizi "Equivalent Von Mises Stress" Dağılımı

Şekil 21' de görüldüğü üzere elde edilen maksimum "Equivalent Von Mises Stress" değeri 45.69 MPa' dır.

Şekil 22: Marc Arayüzü - "Coupling" Analizi "Equivalent Elastic Strain" Dağılımı

Şekil 22' de görüldüğü üzere elde edilen maksimum "Equivalent Elastic Strain" değeri 0.2914' dür.

SONUÇ

Hem orijinal Marc analizi çıktıları hem de DIGIMAT-Marc "Coupling" analizi çıktıları incelendiğinde aradaki fark bariz bir şekilde görülmektedir. Orijinal Marc analizinden elde edilen maksimum "Equivalent Von Mises Stress" değeri 219.2 MPa iken aynı değer "Coupling" analizinde 45.69 MPa olarak elde edilmiştir. Aynı şekilde, orijinal Marc analizinden elde edilen maksimum "Equivalent Elastic Strain" değeri 0.1405 iken aynı değer "Coupling" analizin sonucunda 0.2914 olarak elde edilmiştir. Bu bariz farklılığın kaynağı üretimden simülasyonundan alınan ve parça üzerine haritalanan çıktılardır. Marc üzerinde malzeme modellemesi yapılırken makro ölçekte bir modelleme yapılmaktadır, DIGIMAT ise mikro mezo ölçekli modellemeden makro ölçekli modellemeye geçmektedir. Özellikle bu tür malzeme modellerinde mezo ölçekli malzeme modellemesinden makro ölçekli modellemeye geçmek daha sağlıklı ve doğru sonuçlar vermektedir. Ayrıca, bu haritalama sayesinde malzeme modeli izotropik davranıştan çıkarılıp anizotropik davranışa geçirilmiş olmaktadır. Bu nedenle, sonuçların görselleri incelendiğinde dağılımlarının da gözle görülebilecek bir şekilde değiştiği gözlemlenmektedir.

Bu çalışma, Sonlu Eleman Analizleri' nde (FEA) kullanılan izotropik malzeme modellerinin sonuçları nasıl değiştirdiğini ve anizotropik malzeme modellemesinin DIGIMAT üzerinden nasıl Marc' a aktarıldığında sonuçların ne şekilde etkilendiğini anlatılan bir çalışmadır. Her ne kadar bu çalışma Eklemeli İmalat ile üretilmiş bir malzeme modeli için yapılsa da malzemelerin anizotropik davranışının önemini de anlatmaktadır.

REFERANSLAR

- 1. Digimat 2023.3 Example Manual
- Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review – Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor.
- 3. Flexural quasi-static and fatigue behaviors of fused filament deposited PA6 and PA12 polymers S. Terekhina, T. M. Tarasova, S. Egorov, S. Innokentiy

