

CRADLE CFD ile BİAS Merkez Ofis Binasının Çatısına Yerleştirilecek Olan Solar Panellerinden Elde Edilen Enerjinin Analizi ve Validasyonu

PREPARED BY	EDITED\CHECKED BY
Hikmet Olcaytu Özcan	M. Ahmet Kozanoğlu
Stajyer Mühendis	Lider CFD Mühendisi

Özet

Bu teknik yazı, Cradle CFD kullanılarak BİAS Mühendislik genel merkez ofis binasının çatısına konulacak olan solar panellerden elde edilen enerjiyi belirlemek için yapılan çalışmayı içermektedir. 3 Ağustos 2023 günü farklı saat dilimlerinde (09.00 ile 16.00 arası) elde edilen enerji miktarları, literatürden bulunan analitik formüller ile karşılaştırılarak doğruluk ve hassasiyet açısından değerlendirilip elde edilen verilerden karşılaştırılmalı grafik oluşturulmuştur.

Giriş

Günümüzde sürdürülebilir enerji kaynaklarına olan talep artarken, güneş enerjisi, temiz ve yenilenebilir bir enerji kaynağı olarak öne çıkmaktadır. Solar ışınım (güneş ışınımı), güneşten gelen elektromanyetik radyasyonun yeryüzüne ulaşan kısmını ifade eder. Bu ışınım, solar paneller aracılığıyla elektrik enerjisine dönüştürülerek yaygın olarak kullanılmaktadır [1]. Cradle CFD'de radyasyon çözümleri için Flux (Akı) ve View Factor (Görülebilirlik Oranı) olmak üzere iki farklı metot mevcuttur. Flux metodu, ışınım enerjisinin belli yönlere taşınmasını modelleyen bir yöntemdir, ancak ışınım enerjileri arasındaki etkileşimleri hesaba katmayan bir metottur. VF (Görünüm Faktörü) yöntemi, bir ışınım yüzeyinden büyük bir sayıda parçacığın rastgele yayılmasını sağlayarak ve bu parçacıkların hedef noktalarını takip ederek ışınım görünüm faktörü hesaplamalarını çözümler. Üretilebilecek parçacık sayısının sınırlı olması nedeniyle hafif hatalar oluşabilir; ancak hata genellikle Flux metoduna göre daha az hesaplama yüküne sahip olduğu kabul edilmektedir [2].

Analiz Modeli

Ofis geometrisi oluşturulurken gerçek boyutlara mümkün olduğunca yakın alınmıştır. Ofisin boyutları Şekil 1 de verilmiştir. Çatı ise 40 derecelik bir açı ile tasarlanıp, çatı üzerinde yerleştirilen solar paneller literatüre uygun olarak tasarımı yapılmıştır. Ofis konumu ve belirlenen gün içerisinde güneşin Elevation (yükselme) ve Azimuth (azimut) açıları göz önünde bulundurulmuştur.

Yükselme açısı, Güneş'in ufuk çizgisine göre yüksekliğini ölçer. Bu açı -90° ile 90° arasında değişir. Pozitif değerler, Güneş'in ufuk çizgisinin üstünde olduğunu belirtirken, negatif değerler altında olduğunu ifade eder.

Azimut açısı, panelin hangi yöne dönük olması gerektiğini belirler. Azimut açısı, bölgenin coğrafi konumuna ve mevsimlere göre ayarlanmalıdır [3]. Bu kriterlerden yola çıkılarak panelin çatıya

konumlandırılması ve ölçüleri Şekil 1. CAD geometrisi.ve Şekil 2. Solar Panel. de verilmiştir.

Şekil 1. CAD geometrisi.

www.bias.com.tr

Şekil 2. Solar Panel.

Hesaplama Hacmi

Hesaplama hacmi, literatürden ve Cradle scFLOW kullanıcı kılavuzundan edinilen verilere göre olşturulmuştur (Şekil 3). Bu şekilde seçilen kontrol hacmi, daha kolay ve verimli bir ağ atma işlemi sağlamak amacıyla tasarlanmıştır.

Şekil 3. Hesaplama Hacmi.

Malzeme Seçimi

Malzeme seçimi, solar panellerin dayanıklılığını, ısı transferini, ışınım emilimini ve diğer fiziksel özelliklerini etkiler. Bu nedenle, doğru malzeme seçimi, güneş enerjisi sistemlerinin uzun ömürlü ve etkili bir şekilde çalışmasını sağlamak için kritik bir adımdır. Güneş panelleri genellikle fotovoltaik (PV) hücrelerden oluşur ve bu hücrelerin malzeme seçimi, güneş ışığını elektrik enerjisine dönüştürme verimliliği üzerinde büyük bir etkiye sahiptir. Solar panelinin backsheet (arka kaplama) malzemesi, Polistiren reçine olarak seçilmiştir. Bu malzemeler, hafif, dayanıklı ve yalıtkandır. Bu malzeme, güneş panellerini dış etkenlerden (nem, UV ışınları, sıcaklık değişiklikleri) koruyarak uzun ömürlü bir çalışma sağlar. Solar hücrelerinin malzemeleri ise seramik kategorisinde yeni malzeme ataması yapılarak Şekil

4'te gerçekleştirilmiştir. Aynı zamanda ok işareti ile gösterilen alandan panellere analiz için Katı (ısı iletim panel) ataması yapılıp literatür araştırmasından elde edilen bilgiler ile kalınlık 0,03 metre verilmiştir [4].

Part	Sheet Part			
olid Material			>	X Attribute Solid (heat conduction panel)
				Thickness 0.03 m 🗸 🖞 🔽
ame Material				Material
				⊕ the pure_metal
Parameter	Value	Unit	Туре	emiconductor
Density	2330	kg/m3		🗄 🖓 glass
Specific heat	680	J/(kg•K)	<u>ч</u> ́и	
Thermal conductivity type	Isotropic			E-Los ceramics
				berylia(8cO)(300K) magnesia(MgO)(300K) earthenware(300K) or porcelain(300K) or quartz_caxis_perpendicular(300K) or quartz_caxis_perpendicular(300K) or Material Go, sonorete for brick_sand Go, wood cos fiber_paper_ice i.a. (ArchiVrement_stone

Şekil 4. Malzeme bilgileri.

Analiz Koşulları

Zamana bağlı bir analiz koşturulmuş olup analizde SST k-OMG türbülans modeli kullanılmıştır. Analiz tipleri olarak, ısı, radyasyon ve solar radyasyon analiz edilmiştir. Cradle CFD içerisinde bulunan radyasyon metotlarından VF (view factor) metodu seçilip dalga boyu tipi multi-band olarak Şekil 5'te seçilmiştir. Bu tip, hem güneş ışınlarının (solar) hem de ısı enerjisinin (heat) analiz edilmesine olanak tanır. Bu sayede sistemin termal performansı hesaplanmaktadır.

Flow Flow				Method Setting
Heat Heat	Radiation	Solar radiation		Method Setting
Method of Radiation Analysis			×	
Set the method of radiation analy	ysis. Value		e	action
Radiation	VF method			
Waveband dependence type	Multi-band (Solar and	heat radiation)	~	
	Single waveband Multi-band Multi-band (Solar and	heat radiation)		Method Setting

Şekil 5. Radyasyon metotları.

Döngü bilgileri Şekil 6 da verilmiş olup, analiz yapıldığı zaman dilimi 8 saatlik gibi uzun bir zaman aralığı olması durumundan Analizin "skip method" ile çözülmesinin doğru olcağına karar verilmiştir. Skip method, belirli zaman aralıklarında hesaplamaları atlayarak kullanıcının daha hızlı sonuçlar almasına imkân vermektedir. Skip metodu, hesaplamaları daha az yoğunlaştırılmış aralıklarda gerçekleştirerek analiz süresini kısaltırken, ana analiz zaman noktalarında yeterli veriyi elde etmek amacıyla kullanılır. Şekil 7 de skip metodunun çalışma mantığı verilmiştir. Zaman adımı görüldüğü üzere 8 saniye seçilmiştir. Son döngü 3600 olarak girilmiştir. Bu şekilde iki değerin çarpılmasından oluşan 28800 saniye istenilen 8 saatlik analizi çözdürecektir. Analiz kapsamında analiz çıktılarının kaç saatte bir Postprocessor ekranına verileceğinin ayarlanacağı kısım ise "Output of file" kısmından kullanıcının kaç saatte bir çıktı almak istediğini girdi olarak programa girebileceği bir alan CRADLE içerisinde bulunmaktadır. Ortam sıcaklığı 3 Ağustos günü maksimum olarak ölçülmüş olan 35 derece olarak alınmıştır.

de arameters of time and cyde					9	?
Parameter	Value	Unit	Туре	 		_
Last cyde	3600					
Type	Time step					
Time step	8	S	ŵ			
Set start time	Do not set					
Set stop time	Do not set					
Execute flow calculation wit	Execute					
Duration time of flow c	28800	S	ŵ			
Skip time	3600	S	ŵ			
Interval time during ski	60	S	<u>ů</u>			
fault temperature and unit set efault temperature 35 avity	ting C ~	•				

Şekil 6 Analiz döngü bilgileri.

Şekil 7. Skip Method çalışma mantığı.

Radyasyon ve Solar Radyasyon Şartları

Solar hücrelerin Emisivite değerleri, 0-5 dalga boyu bölgesinde 0.7 iken, 5 dalga boyu bölgesinde 0.9 olarak belirlenmiştir. Aynı şekilde Backsheet (arka kaplama) aynı dalga boylarında sırası ile 0.8 ve 0.9 olarak literatür araştırmalarından bulunmuştur [5].

MCRT (Monte Carlo Işın İzleme) metodu CRADLE tarafından varsayılan olarak gelmektedir. Bu yöntem, en modern ve güncel yaklaşımı sunmaktadır. Monte Carlo yöntemi, istatistiksel temellere dayandığı için gerçekçi sonuçlar elde etme kapasitesine sahiptir.

Solar radyasyon kısmında ise Cradle içerisinde bulunan bir özellik ile gelen, lokasyan bilgilerini 3 farklı şekilde programa tanımlamak mümkündür. Şekil 8 de sırası ile verilen bu seçenekler, ülke şehir bilgileri, enlem ve boylam veya güneşin yönü belirtilerek girdi yapma şansı tanımaktadır. Bu analizde Şekil 8'de görüldüğü üzere, enlem ve boylam seçeneği seçilerek ofisin lokasyon bilgileri tanımlanmıştır.

Condition Wizard					
Condition Wizard Analysis Conditions Analysis Conditions Basic Setting C Initial Condition C Radiation C Radiation C Boundary Condition C How Boundary C How Boundary C Hormal Boundary C Periodic Boundary C Symmetrical Boundary C Symmetrical Boundary C Symmetrical Boundary C Symmetrical Boundary C Surce Condition C Analysis Control C A Analysis Control C A A A A A A A A A A A A A A A A A A	Boundary Wavelength Location Date and Time Amount of Solar Radiation	Set a location of an Location Type Parameter Latitude Longitude Longitude at set	Latitude and longitude City name Latitude and longitude Direction of the sun point of standard time	f the sun. 41.0246 29.0393 45	?
Output of Field Fie Output of Field Fie Output of Field Fie Output of Chied Fiel Output of Chied Fiel Other Output Other Output Other Output Other Output					

Şekil 8. Ofis lokasyon bilgileri.

Tarih ve zaman girdileri, Cradle CFD içerisinde karmaşık işlemler gerektirmeden aynı pencere üzerinden girilebilen değerlerdir. Analiz günü olarak 3 Ağustos günü ve analizin hesaplanmaya başlayacağı saati olarak 09.00 girdileri programa tanıtılmıştır. Ek olarak solar panellerden ofise hangi zaman aralıklarında ısı akışı olacağı, Şekil 9'da, seçili zaman dilimi (time interval) seçeneği seçilmiştir. Bu şekilde sabah saat 9 da başlayan analiz, 1 saatlik artışlar ile analiz edilmek üzere ayarlanmış olmaktadır.

Boundary Wavelength Location Date and Time	Set the date and time of which sola	ar radiation is analyzed.		8
Amount of Solar Radiation	Parameter Start time to calculate	Value	Unit	Туре
	Hour	9		
	Minute	0		
	Calculation interval	Every specified time interval		
	Time interval	1	hour	யீ
	Astronomical information	Calculate automatically by the analy		
	Month	8		
	Day	3		

Ek olarak solar sabiti olarak bilinen değer, literatür taramalarından elde edilen bilgiler ile 1367 W/m² bulunmuştur [6]. Bu değer, Cradle CFD penceresi içerisindeki "Amount of Solar Radiation" bölümüne girdi olarak tanıtılmıştır.

Sınır Koşulları

Akış Sınır Koşulları: Rüzgârın estiği yöne (Doğu-Kuzey-Doğu) power law velocity tipi tanımlanmıştır. Bunun için gerekli parametreler, ofisin bulunduğu bölgedeki yapıların referans yüksekliği (107m), bu yükseklik üzerinde ölçülen hız (5.1m/s) ve saat dilimleri içerisinde ölçülen sıcaklıkların verileri toplanıp Şekil 10 da ki tablo oluşturulmuş ve program içerisine atanmıştır.

Inflow and outflow condition				Name	table	e]				
Name Flux		4	?	Number	x			Y			x	נ	
Type Power law yel	odty	~		1	0			28			Y G	0	
Type Tone and te	uali,			2	1			30			· _		
				3	2			31					Add
Barameter	Value	Unit	Turne	4	3			34					Modify
	Value	Unit	Type	5	4			33					Delete
Type of power law	Standard			6	5			33					Delete
Direction	Specify wind direction			7	6			32					Reset
Angle from Y-axis to N	0	deg	1. 1. 1.	8	7			30					
Note) Common with	all other power law velocity boundary conditions	and the	solar radiation								1		
Wind direction	ENE									12 13			
Environment	 Central area of a large city 			l							۰		
Inverse of power expo	. 3			-							Axis	Axis Type	Unit
Ground height	0	m	<u>w</u>	3	4			*			x	Time	hour
Reference height	107	m	<u>w</u>				1 /		1		Y	Temperature	С
Velocity at reference height	5.1	m/s	Ψ		3		17	1		<			
Inflow temperature type	Specify value			3	2		·÷/	÷					
Inflow temperature	table	-		3	1		¥						
Inflow turbulence type	(Power law) Constant turbulence intensity				1		1	1					
Turbulence intensity	0.45	_		3	0		·	immin		*			
Description Specifies inflow velocity with the prediction of wind enviro	a vertical distribution based on the power law. T nment in urban areas.	fhis is ge	nerally used for	2	9 8	/							Detail
Set direction normal to reg	on Preview R	emove	Set]		1	2	3 4	5	6]	ОК	Cancel

Şekil 10'daki grafikte x değerleri zaman(saat) olurken y değerleri sıcaklık değerlerini göstermektedir. Diğer iki bölgeye ise akışın çıktığı bölge olmasından dolayı "statik basınç (dış akış)" koşulu girilip O Pascal değeri verilmiştir.

Termal Sınır Koşulları: Duvar bölgesi, backsheet ve solar panel hücrelerine heat transfer (ısı transferi) termal koşulu tanımlanarak, analiz içindeki enerji transferi ve sıcaklık dağılımlarının daha kesin ve gerçekçi bir şekilde modellemesi sağlanmıştır.

Polyhedral Ağ Örümü

Polyhedral ağ yapısı, hesaplama hacmi sınırlarının çokgen elemanlarla örümünü sağlar. Polyhedral ağ, diğer yaygın ağ türleri olan Tetrahedral (TET) ve Hexahedral (HEX) ağ yapılarına alternatif bir yaklaşımdır. Polyhedral hücreler, diğer ağ yapılarına kıyasla daha avantajlı bir yapıya sahiptirler [7]. Bazı avantajları;

- Karmaşık geometrilerde veya akış yönünün belirsiz olduğu durumlarda Polyhedral ağ yapısı avantajlı olmaktadır.
- Polyhedral ağ yapısı çok yüzlü elemanlara sahip olması sebebiyle çalışılan geometri karmaşık olsa dahi gerekli ağ yapısını istenilen yerlerde oluşturarak sayısal çözümün stabilitesini arttırmaktadır.

Şekil 11. Polyhedral Mesh.

Analiz Sonuçları

- Analizin yapıldığı bilgisayar özellikleri: Intel(R) Core(TM) i5-3230M CPU (4 core) 8.00 GB RAM'e sahiptir.
- > Analiz çözüm süresi ; 2 saat 24 dakika 40 saniye
- Postprocess ekranından alınan enerji verileri, Şekil 12 ve Şekil 13 te gösterilmiş olup 09:00 16:00 zaman aralığı için sonuçlar alınmıştır.

Şekil 12. Saat 9 ile 12 arasında elde edilen Enerji verileri.

Şekil 13. Saat 13 ile 16 arasında elde edilen Enerji verileri.

Solar Panellerden Elde edilen saatlik Enerji miktarları (CFD)

Postprocessor ekranından alınan Enerji çıktıları Excel'e aktarılarak Tablo 1 oluşturulmuştur.

Lokal saat (hr)	Enerji CFD (kW)
9.00	13.0252
10.00	13.2585
11.00	13.4357
12.00	13.5591
13.00	13.6691
14.00	13.8418
15.00	13.8403
16.00	13.7902

Tablo 1. CFD Enerji tablosu.

Solar Panellerden Elde edilen saatlik Enerji miktarları (Analitik)

Bu bölümde, CFD analizleri sonucunda elde edilen enerji miktarlarının analitik hesaplamalar ile karşılaştırması yapılmıştır [6]. Enerji miktarını hesaplamak için gerekli denklemler ve sabitler Tablo 2'de verilmiş olup, Tablo 3'teki enerji verileri sabah 09:00'dan başlamak üzere 16.00'a kadar hesaplanmıştır.

Saat açısı (w) :

$$w = 15(t_s - 12)$$
(1.1)

Lokal Standard Zaman Meridyeni (LSTM):

$$LSTM = \mathbf{15}^{\circ} * \Delta \mathbf{T}_{UTC} \quad (T\"{urkiye} = Utc+3) \tag{1.2}$$

Zaman Denklemi (EoT):

$$EoT = 0.258cosx-7.416sinx-3.648cos2x-9.228sin2x (dk)$$
 (1.3)

$$x = \frac{360*(N-1)}{365.242} \text{ (derece)}$$
(1.4)

Zaman Düzeltme Faktörü (TC):

$$TC = 4^{*}(Boylam - LSTM) + EoT$$
(1.5)

Lokal Solar Zamanı (ts):

$$ts = Local saat(08.00-16.00) + \frac{TC}{60}$$
(1.6)

Sapma Açısı (δ) :

$$\sin(\delta) = 0.39795\cos(0.98563(N - 173))$$
(1.7)

Güneş Yükseklik açısı (α):

$$\alpha = \sin^{-1}(\sin \delta \sin \phi + \cos \delta \cos w \cos \phi)$$
(1.8)

Azimuth Açısı (A):

$$A = \sin^{-1}(\frac{-\cos\delta\sin\omega}{\cos\alpha}) \tag{1.9}$$

Zenith Açısı (θ_z):

$$\boldsymbol{\theta}_{z} = 90 \boldsymbol{\cdot} \boldsymbol{\alpha} \tag{1.10}$$

İnsidans Açısı (θ_i):

 $\cos \theta_{i} = \cos \beta [\sin \delta \sin \phi + \cos \delta \cos \phi \cos w] - (\cos \delta \sin w \sin \beta \sin \gamma) + \\ \sin \beta \cos \gamma [\sin \delta \cos \phi - \cos \delta \cos w \sin \phi]$ (1.11)

Doğrudan Normal Güneş Işıması ($I_{b,n}$):

$$I_{b,n} = I_0(a_0 + a_1 e^{-\frac{k}{\cos\theta_z}})$$
(1.12)

Dünya Dışı Güneş Işınımı (I_0):

$$I_0 = I_{SC} \left(1 + 0.034 \cos(\frac{360N}{365.25}) \right)$$
(1.13)

 $a_0 = 0.4237 - 0.00821(6-A)^2$ $a_1 = 0.5055 + 0.000595(6.5-A)^2$ $k = 0.2711 + 0.01858(2.5-A)^2$

Boylam açısı (f) (derece)	41.0246
Enlem açısı (derece)	29.0393
Gün sayısı (N)	215
Referans yükseklik (km)(A)	0.107
Tilt açısı (b) (derece)	24
Azimuth açıklık açısı(g)	
(derece)	156
a_0	0.1386
a ₁	0.749
k	0.2817
$I_{Sc} (W/m^2)$	1367
Panel yüzey alanı m ²	21.249

Tablo 2. Enerji hesaplaması için gerekli lokasyon, açı ve sabit sayılar.

Lokal	ts(lokal solar	w(saat	Solar	Azimuth	Zenith		Doğrudan Normal Güneş	Enerji
saat (hr)	zaman)	açısı)	açı (α)	açısı (A)	açısı(θz)	(0 i)	lşıması (l _{b,n})	(kW)
		-						
9.00	7.8315	62.5273	31.8781	85.6922	58.1219	35.2309	572.1855	12.1584
		-						
10.00	8.8315	47.5273	43.0108	74.3063	46.9892	98.2850	627.8593	13.3414
		-						
11.00	9.8315	32.5273	53.4201	59.4434	36.5799	69.3393	659.3305	14.0101
		-						
12.00	10.8315	17.5273	61.9509	37.6800	28.0491	58.8565	676.0968	14.3664
13.00	11.8315	-2.5272	66.2445	5.9966	23.7555	103.6867	682.2825	14.4978
14.00	12.8315	12.4728	64.0243	-28.0746	25.9757	35.7079	679.2505	14.4334
15.00	13.8315	27.4728	56.5925	-53.0988	33.4075	88.2023	666.3433	14.1591
16.00	14.8315	42.4728	46.6385	-69.8199	43.3615	82.1613	640.5336	13.6107

Tablo 3. Analitik Enerji tablosu.

Şekil 14'te CFD enerji verileri ile Analitik çözümden elde edilen verilerin karşılaştırmalı grafiği verilmiştir.

Şekil 14. Karşılaştırmalı grafik.

Grafikten de görüleceği üzere, Analitik çözüm ile CFD sonuçları arasındaki görülen farklılıklar, gerçek dünyanın karmaşıklığını tam olarak yansıtma güçlüğü, kullanılan yaklaşımların, sınır şartlarının ve sınırlamaların sonuçlara etkisi, sayısal yöntemlerin yakınsama özellikleri gibi faktörlerden kaynaklanabilmektedir. Öte yandan, CFD analizleri gerçek dünya koşullarını daha iyi yansıtabilir ancak yaklaşımların ve sınırlamaların sonuçlar üzerinde etkisi olduğundan dolayı farklılıklar gözlenebilir. Yapılan çalışmada CFD analiz sonucundan elde edilen verilerle analitik çözümden elde edilen veriler arasında %5 seviyesinin altında bir hata ile karşılaşmaktayız.

www.bias.com.tr

Kaynakça

- [1] Rob Garner, "Solar Irradiance".2017.
- [2] CRADLE, "scFLOW Preprocessor Kullanıcı Kılavuzu".
- [3] Wojciech Sas, "Sun Angle Calculator".
- [4] S. Vaishak ve P. V. Bhale, "Investigation on the effect of different backsheet materials on performance characteristics of a photovoltaic/thermal (PV/T) system", Renew Energy, c. 168, ss. 160-169, May. 2021, doi: 10.1016/j.renene.2020.12.049.
- [5] I. Guarracino, A. Mellor, N. J. Ekins-Daukes, ve C. N. Markides, "Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors", *Appl Therm Eng*, c. 101, ss. 778-795, May. 2016, doi: 10.1016/j.applthermaleng.2016.02.056.
- [6] William B. Stine and Michael Geyer, Power From The Sun. 2001.
- [7] M. Sosnowski, J. Krzywanski, ve R. Gnatowska, "Polyhedral meshing as an innovative approach to computational domain discretization of a cyclone in a fluidized bed CLC unit", doi: 10.1051/4.

