

MSC Nastran ile Topografya Optimizasyonu

Hazırlayan

Fatih Furkan BARUT Yapısal Analiz Mühendisi

Tarih: 01/02/2023

Makineler işlevini yerine getirirken belirli düzeylerde titreşim oluşturarak çalışmaktadırlar. Özellikle titreşimler, yapıların doğal frekans noktalarında rahatsız edici seviyelere yükselebilmekte ve parçalar üzerinde hasara sebep olabilmektedir. Bu yazıda, yapıların doğal frekans noktalarının topografya optimizasyonu kullanılarak nasıl maksimize edilebileceğinden bahsedilecektir.

1. GİRİŞ

Topografya optimizasyonu, model kurulumu esnasında belirtilen tasarım bölgelerinde şekil optimizasyonu yaparak, belirlenen amaca ulaşmak için kullanılan bir optimizasyon çeşididir. Bu optimizasyon gerçekleştirilirken, tasarım bölgesinden kütle eksiltmek veya eklemek yerine bir takım patlatmalar (bead) kullanıcının belirttiği parametrelere göre yapıya uygulanır. Patlatmalar gerçekleştirilirken sonlu eleman ağı üzerindeki nodlar, vektörler aracılığı ile taşınırlar. Bu vektörler programın kontrolüne bırakılabileceği gibi manuel olarak da tanımlanabilirler. Şekil 2'de program kontrollü ve kullanıcı tarafından tanımlanan vektörler görülmektedir.

Şekil 2. Vektör Tanımlamaları

Topografya optimizasyonunda kullanılabilecek analiz çeşitleri:

- Statik Analiz
- Modal Analiz
- Burkulma

2. TEK SERBESTLİK DERECELİ BİR SİSTEMİN HAREKET DENKLEMİ

Şekil 1'de görülen tek serbestlik derecesine sahip bir sistemin hareket denklemi ve doğal frekansı:

Şekil 1. Tek Serbestlik Derecesine Ait Sistem [1]

 $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = p(t)$

Bu eşitlikte yer alan m kütleyi, b sönümü, k katılığı, F kuvveti ve x ise yer değiştirmeyi ifade etmektedir. Eğer kuvvet ve sönüm sistemden çıkarılırsa eşitlik:

 $m\ddot{x}(t) + kx(t) = 0$, halini almaktadır.

Eşitlikte yer alan x'in (yer değiştirmenin) harmonik bir hareket yaptığı varsayılırsa:

$$x = A_1 \sin \omega t$$

 $\ddot{x} = -\omega^2 A_1 \sin \omega t$, olur.

Bu eşitlikte yer alan ω^2 nin kökleri "eigenvalue" olarak adlandırılır.

Doğal frekans ise aşağıdaki eşitlikler yardımıyla hesaplanmaktadır.

$$\omega_n = \sqrt{\frac{k}{m}} \text{ natural frequency (rad/sec)}$$

$$f_n = \frac{\omega_n}{2\pi}$$
 natural frequency (cycles/sec)

www.bias.com.tr

3. OPTİMİZASYON PARAMETRELERİ

Modelleme işlemleri Patran içerisinde gerçekleştirilmektedir. BDF dosyasına bakılacak olursa DOPTPRM, BEADVAR ve DRESP1 kartlarının kullanıldığı görülebilir.

DOPTPRM: Optimizasyon çalışması için bir takım parametrelerin tanımlandığı karttır. Standart değerlerin kullanılması önerilmektedir. Ancak analiz iterasyonu sayısı burada manuel olarak tanımlanabilir.

BEADVAR: Analiz esnasında yapılan patlatma boyutlarının tanımlanması için kullanılan Nastran kartıdır. Örnek görsel Şekil 3'de verilmiştir. Bunun yanında patlatmanın yapılacağı yönde yine BEADVAR ile programa tanımlanabilir.

Şekil 3. Patlatma (Baed) Boyutları

- MW: Maksimum patlatma (bead) genişliği.
- ANG: Patlatma (bead) açısı.
- MH: Maksimum patlatma (bead) yüksekliği.

Bu kart termal yüklemelerde kullanılamamaktadır.

DRESP1: Analiz esnasında neyin optimizasyonunun yapılması istendiği bu kart ile programa tanımlanır. Örneğin analiz sonucunda yapının doğal frekans noktaları maksimize edilmek isteniyorsa DRESP1 kullanılarak tanımlanabilir.

4. ÖRNEK ÇALIŞMA ANALİZ MODELİ

Şekil 4'de görülen 2 mm kalınlığa sahip çelik sac örnek analiz için kullanılmıştır. Sac kenar nodlarından 6 serbestlik derecesinde kısıtlanarak desteklenmiştir.

Gerekli malzeme atama ve özellik (property) tanımlama işlemleri yapıldıktan sonra **Topografya Optimizasyonu** için ihtiyaç duyulan ayarlamalar Analiz sekmesi altında gerçekleştirilmektedir.

www.bias.com.tr

Şekil 4. Analizlerde Kullanılan Çelik Sac

Optimizasyon çalışması ile ilgili tanımlamaları yapmak için Analiz sekmesi altında yer alan **Toptomize** seçilir. Şekil 5'de topografya optimizasyonu için gerekli tanımlamaların yapıldığı sekme görülmektedir.

Analysis			
Action:	Toptomize 🔻		
Object:	Entire Model 🔻		
Method: Analysis Deck 🔻			
Translation Parameters			
Optimization Parameters			
Obj	Objectives & Constraints		
C C	Optimization Control		
Design Domain			
Direct Text Input			
Subcases			
Subcase Select			

Bir Topografya Optimizasyonu gerçekleştirmek için aşağıdaki işlemler sırası ile uygulanır:

 "Objective and Constraints" sekmesinden bulunan analiz tipi olarak Topografya seçilir. Eğer doğal frekans noktaları maximize edilmek isteniyorsa "Objective Functions" bölümünden "Maximize" seçilir. Ardından maksimize edilmesi istenilen modlar tanımlanır.

Pa Objectives and Constraints —			
Type: Topography 🔻			
Objective Function(s) O Minimize Compliance			
O Maximize: Frequency ▼ □ Tr	rack Modes	l	
Mode Number(s): (comma or space separated)		L	
1,2,3		L	
Frequency Constraint Target(s) Mode Number(s): (comma or space separated)			
Corresponding Frequency(ies):			
Constraint Target: None 🔻			

Şekil 6.Objective and Constraint Sekmesi

2) "Optimization Control" sekmesi içersinde analiz iterasyon sayısı ve patlatmanın (bead) ölçüleri tanımlanır.

Pa Optimization Control Paramet — 🗌 🛛 👋	Minimum Bead Width (MW > 0.0)	
	35	
Initial Design (0.0 < XINIT <= 1.0)	Maximum Bead Height (MH > 0.0)	
	15	
[Lower Bounds (XLB < XUB)]	Draw Angle (0.0 < ANG < 90.0)	
	80	
[Upper Bounds (XUB > XLB)]	Buffer Zone Exclude from Design:	
	Both ▼	
Maximum Design Cycles (DESMAX > 0)		
40	Results Output Format	
	include output official	

Şekil 7. Optimization Control Sekmesi

Analiz iterasyon sayısı "Maximum Design Cycles" bölümünde tanımlanmaktadır.

3) "Design Domain" sekmesinden optimizasyon çalışmasının gerçekleştirileceği "Property" seçilir.

Pa Design Domain	– 🗆 X		
Valid Properties			
Name	Туре		
1 Part_1	Stan. Homogeneous Plate(CQUAD4)		
Name	Туре		
Filter *	*		
Sort by Name	Sort by Type		
Highlight Elements Selected: Part_1 Design Domain: Selected Properties	Min Bead Width 35		
Name	Min Bead Width		
1 Part_1	35		
Remove Selected Rows Manufacturing	Remove All Rows		
ОК Ве	set Cancel		

Şekil 8. Design Domain

Eğer isteniyorsa **"Manufacturing Constraints"** bölümünden patlatmaların yapılacağı yön tanımlaması yapılabilir. Bu çalışmada yön bilgisi program kontrolünde bırakılmıştır.

4) Bu çalışma kapsamında yapının doğal frekans noktaları maksimize edilmek istendiği için "Subcases" sekmesinden, "Solution Type", "103 NORMAL MODES" olarak ayarlanmalıdır.

Pa Subcase Create	-		×
Solution Type: 101	LINEAR STATIC -		
Available Subcase 🗸	101 LINEAR STATIC	i	
Default	103 NORMAL MODES		
SC: Design Optin	105 BUCKLING		
			-

Şekil 9. Subcases Sekmesi

5) "Subcase Select" bölümünde ise "Solution Type" tekrardan "103 NORMAL MODES" olarak ayarlandıktan sonra, çalışılmak istenen "Subcase" seçimi yapılır.

Pa Subcase Select	-	
Current Job: Topography		
Solution Type: 101 LINEAR STATIC -)	
Subcases Availabl 101 LINEAR STA Default 103 NORMAL MU SC1:DEFAULT 105 BUCKLING	ATIC ODES	1
SC: Design Optin		
		Ľ
✓ Filter ON/OFF		
Filter *		
◯ Select All ◯ Unselect All		
Subcases Selected:		
103 Default		•
		Ľ
OK Clear		Cancel

Şekil 10. Subcase Select Sekmesi

Tüm bu ayarlamalar yapıldıktan sonra analiz koşturulabilir.

5. SONUÇLAR

Analiz çözdürüldükten sonra oluşan H5 dosyası Patran'a aktarılarak sonuçlar incelenebilir. Şekil 11'de analiz sonucunda oluşan geometri görülmektedir.

Şekil 11. Analiz Sonucunda Oluşan Geometri

Tablo 1. Sonuçlar

Mode	Orijinal Model (Hz)	Optimizasyon Sonucu (Hz)	Artış (%)
1	285.93	637.19	122.84
2	302.40	645.25	113.38
3	395.14	696.08	76.16
4	449.31	735.84	63.77
5	457.41	781.85	70.93
6	461.21	798.35	73.10
7	567.34	829.84	46.27
8	584.26	832.94	42.56
9	598.24	868.01	45.09
10	615.84	881.84	43.19

Sonuçlar incelendiğinde yapının ilk üç doğal frekansında olan artışların diğer modlara göre daha yüksek olduğu görülmektedir. Bu durum **"Objective and Constraints"** bölümünde, ilk üç mod için optimizasyon çalışması yapılması istenmesinden kaynaklanmaktadır.

6. REFERANS

[1]. https://link.springer.com/chapter/10.1007/978-3-030-12103-7_3

- Nastran Quick Referans Guide
- NAS107 Course Notes

www.bias.com.tr