

ROMAX'TA ESNEK MUHAFAZANIN ŞANZIMAN GRUPLARI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

HAZIRLAYAN

Mert Erkuş Mekanik Simülasyon Aday Mühendisi

Tarih: 29/08/2022

MUHAFAZANIN ŞANZIMAN GRUPLARI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

Romax, dişli kutularının tasarım ve analizinde kullanılan bir simülasyon yazılımıdır ve esnek cisimleri simülasyon modeline eklememize olanak tanır. Şanzıman gruplarına ait simülasyon modelleri incelenirken, şanzıman grubuna ait rulmanların yere rijit bir şekilde bağlanması yerine esnek bir cisim olarak modellenen muhafazaya bağlanması daha doğru sonuçlara ulaşmak için önemlidir. Bu çalışmada şanzıman grubuna muhafaza eklenirken dikkat edilmesi gerekenler üzerinde durulmuş ve muhafazanın etkisi örnek bir çalışmayla gösterilmiştir.

MUHAFAZANIN EKLENMESİ

DİRENGENLİK MATRİSİNİN OLUŞTURULMASI

Şanzıman grubunu yere rijit bir şekilde bağlamak yerine esnek cisim olarak modellenen bir muhafazaya bağlantısını incelemek için bir direngenlik matrisi (stiffness matrix) oluşturulmalıdır. Romax'ta muhafazaya ait direngenlik matrisinin oluşturulması için 2 yöntem kullanılabilir. İlk yöntem dışarıdan sonlu eleman (SE) metoduyla oluşturulmuş bir muhafaza modelinin sisteme eklenip rulman bağlantıları tanımlanarak direngenlik matrisinin elde edilmesidir. Diğer yöntem ise, yağlama ve materyal özelliklerine benzer şekilde, Romax'ın veri tabanında bulunan direngenlik tanımlarının kullanılmasıdır.

Direngenlik matrisi (K), Hooke yasasının genel ifadesi olarak tanımlanabilir. Bu matris, cisimlerin serbestlik dereceleri arasındaki rijitliği tanımlayan simetrik bir matristir.

F = -KX $M = -K\theta$

F ve X kuvvet ve deplasman vektörleri, M ve θ ise moment ve dönme vektörleridir.

Romax'ta rulmanlar modeli basit tutmak amacıyla tek bir düğüm noktasıyla (node) ifade edilir. Her düğüm noktasının 6 serbestlik derecesi vardır (x, y ve z eksenlerinde yer değiştirme ve x, y ve z eksenleri etrafında dönme). Buna bağlı olarak tek bir rulmana bağlı muhafazaya ait direngenlik matrisi 6x6 elemandan oluşur. Birden fazla rulman bağlantısı olması durumunda Romax, bu bağlantıların birbirleri üzerindeki "cross coupling" etkilerini de hesaba katabilmek için terimler oluşturur. Bu etki

rulmanlardan birinde oluşan deplasmanın veya rotasyonun diğer rulman üzerinde deplasman veya rotasyon oluşturabileceği anlamına gelmektedir.

		dX1	dY1	dZ1	dTheta1	dPhi1	dPsi1	dx2	dY2	dZ2	dTheta2	dPhi2	dPsi2		
	Fx1	6.48E-01	2.48E-01	9.48E-01	7.35E-01	3.64E-01	2.75E-01	1.24E+0	7.45E-01	-2.79E-01	7.73E-01	1.05E+00	-4.35E-01		
	FY1	2.48E-01	5.98E-01	4.20E-01	9.25E-01	5.34E-01	8.85E-01	-2.40E+0	7.645-01	2.62E+00	-2.53E-01	-3.92E-01	3.05E+00	Г	
Bulman 1	Fz1	9.48E-01	4.20E-01	1.25E+00	9.14E-01	6.41E-01	4.645-01	2.24E+00	9.645-01	-5.24E-01	1.25E+00	1.55E+00	-7.90E-01		Cross Coupling
Direngenlik	Mtheta1	7.35E-01	9.25E-01	9.14E-01	1.11E+00	7.84E-01	1.18E+00	-2.55E+00	9.335-01	3.16E+00	-1.55E-01	-3.71E-01	3.67E+00	\sim	Terimleri
Matrisi	MPhi 1	3.048-0	5.34E-01	6.41E-01	7.84E-01	8.55E-01	5.79E-01	3.29E+00	1.14E+00	-9.04E-01	1.69E+00	2.05E+00	8.02E-01		
	MPsi1	2.75E-01	8.85E-01	4.64E-01	1.18E+00	5.79E-01	1.44E+00	-2.96E+00	1.06E+00	3.80E+00	-1.68E-01	-4.75E-01	1.92E+00		
	Fx2	1.24E+0	-2.40E+0	2.24E+00	-2.55E+00	3.29E+00	-2.96E+00	4.44E+00	1.29E+00	-8.53E-01	2.74E+00	3.17E+00	1.20E+00		
	FY2	7.45E-01	7.64E-01	9.64E-01	9.33E-01	1.14E+00	1.06E+00	1.29E+00	1.15E+00	5.01E+00	1.48E-01	-2.68E-01	1.48E+00		
Cross Coupling	Fz2	-2.79E-01	2.62E+00	-5.24E-01	3.16E+00	-9.04E-01	3.80E+00	-8.53E-01	5.01E+00	7.87E-01	1.68E+00	1.79E+00	1.30E+00		Rulman 2
Terimleri	Mtheta2	7.73E-01	-2.53E-01	1.25E+00	-1.55E-01	1.69E+00	-1.68E-01	2.74E+00	1.48E-01	1.68E+00	1.04E+00	9.33E-01	↓ 1276+00	_	Direngenlik Matrisi
	MPhi 2	1.05E+00	-3.92E-01	1.55E+00	-3.71E-01	2.05E+00	-4.75E-01	3.17E+00	-2.68E-01	1.79E+00	9.33E-01	1.45E+00	133E+00		
	MPsi2	-4.35E-01	3.06E+00	-7.90E-01	3.67E+00	8.02E-01	1.92E+00	1.20E+00	1.48E+00	1.30E+00	1.37E+00	1.33E+00	1.34E+00		

SE MODELİNİN KONTROLÜ

Romax, varsayılan seçenek olarak dışarıdan eklenen düşük kalitedeki SE verilerinin, hatalı sonuçlara sebep olmaması için oldukları şekilde kullanılmasına izin vermez. Romax bu SE modellerinin kalitesini belirlemek için çeşitli kontrol seçeneklerine sahiptir. Bu seçenekler aşağıdaki gibi sıralanabilir.

- None: Herhangi bir eleman kontrolü yapılmaz. Bu önerilen bir seçenek değildir.
- Ansys 10: Ansys 10'da kullanılan varsayılanlara benzer kontroller yapar.
- Nastran 2004: MSC.NASTRAN 2005'te kullanılan varsayılanlara benzer kontroller yapar.
- Romax Recommended: Bu seçenek kontroller için Nastran 2004'ü referans alır ve ağ kalitesi için ekstra birkaç kontrol daha yapar. SE modeli, Romax'ın SE çözücüsüyle analiz edilecekse bu seçenek önerilir.
- **User Defined**: Bu seçeneğin seçilmesi durumunda tüm kontroller ve toleranslar değiştirilebilir, devre dışı bırakılabilir veya aktif edilebilir.
- **Romax Minimum**: Romax SE çözücüsünün kullanılabilmesi için önerilen minimum kontrolleri yapar. Bu önerilen bir seçenek değildir.

Kontrollerin "Romax Recommended" seçeneğiyle yapılması tavsiye edilir. Kullanıcılara, sadece ağ kalitesinden emin oldukları veya sorunun kaynağını bildikleri durumlarda toleranslar üzerinde değişiklik yapmaları önerilir.

SE MODELİNİN DÜĞÜM NOKTASI BAĞLANTILARININ YAPILMASI

SE muhafaza eklenip, konumlandırıldıktan sonra rulman düğüm noktalarında hesaplanan yüklerin muhafazaya aktarılabilmesi için rulman düğüm noktaları ve muhafaza düğüm noktaları arasında bağlantı yapılmalıdır. Romax'ta yer alan "Edit Node Connections" sekmesini kullanarak bu düzenlemeler yapılabilir. Burada 2 farklı rijit bağlantı seçeneği vardır.

- **RBE2**: Tüm düğüm noktası deplasmanları birbirine eşit olacak şekilde bağlanır. RBE2, varsayılan seçenektir.
- **RBE3**: Tüm düğüm noktalarındaki yükler birbirine eşit olacak olacak şekilde bağlanır.

Bağlantıları oluşturmak için otomatik olarak düğüm noktalarının aranmasını sağlayan 2 ana yöntem vardır. Yöntemlerden biri düğüm noktası grupları (örneğin dişliyi, SE mile bağlamak) için kullanılırken diğeri tek bir düğüm noktası (örneğin rulmanı, SE muhafazaya bağlamak) için kullanılır.

Node groups - Solid Search Method

Düğüm noktası grupları için kullanılan bu yöntem, her düğüm noktasının etrafında bir bölüm dairesi çapı (PCD) ve bağlantı elemanı genişliği belirler. Bu parametreler bağlantıların oluşturulması için kullanılır. "Solid Search" seçeneği PCD tarafından tanımlanan silindirin içinde kalan tüm düğüm noktalarını arar. "Use Surface Nodes" seçeneği aramayı SE modelinin sınırlarında kalan düğüm noktalarıyla sınırlar.

Tolerans ayarları PCD için bir ölçeklendirme faktörü olarak tanımlanır. Yüksek tolerans ayarları arama silindirinin PCD'nin dışına çıkmasına sebep olur. Tolerans ayarlarının oluşturduğu arama silindirinin dış çapı PCD + 2*Tolerans*PCD şeklinde tanımlanır. Düğüm noktaları orijinden "Magnitude" kadar uzaklıkta ve " α " açısıyla konumlanmıştır. Ayrıca orijinden eksenel yöndeki uzaklıksa "Z" olarak tanımlanır. Romax bu tanımlamaları otomatik olarak gerçekleştirir.

ŞEKIL 2: NODE GROUPS - SOLID SEARCH METHOD

Single node - Shell Search Method

Bu yöntemde bağlantı noktaları belirtilen genişlik boyunca, orijinden "Z" uzaklıkta PCD'de yer alır.

Tolerans ayarları önceki metoda benzer bir şekilde PCD için bir ölçeklendirme faktörü olarak kullanılır ve bir arama silindiri oluşturur.

Bu silindirin dış çapı PCD + 2*Tolerans*PCD, iç çapı ise PCD-2*Tolerans*PCD olarak tanımlanır. Bu yöntemde düğüm noktası merkezde yer aldığından "Magnitude" ve " α " sıfırdır. Eksen yönü düğüm noktalarının hangi yönde aranacağını belirler.

ŞEKİL 3: SİNGLE NODE - SHELL SEARCH METHOD

Bu yöntemler dışında "Import Nodes" ve "Export Nodes" butonlarıyla düğüm noktaları, önceden kaydedilmiş bir oturumdan içe veya dışa aktarılabilir.

SE MODELININ MALZEME ÖZELLIKLERININ SEÇILMESİ

İçe aktarılarak eklenen muhafazanın kendi materyal özellikleri vardır. Romax'ta "Modelling" sekmesi altında "Materials>Edit Materials" yolu izlenerek bu özellikler, Romax veri tabanı kullanılarak değiştirilebilir veya var olan değerler düzenlenebilir.

Bu aşamadan sonra SE modelinin indirgenmesi (model order reduction) gerçekleştirilebilir.

SE MODELININ INDIRGENMESI

Bu aşamada SE verileri indirgenerek yeni ve daha küçük boyutta direngenlik ve kütle matrisleri oluşturulur. Bu verilerin indirgenmesi, analizde tam çözüme yakın bir sonuç bulurken işlem süresini kısaltarak avantaj sağlar. İndirgenmenin yapılmasının ardından bu matrisler modele otomatik olarak uygulanır.

ANALİZ ÖRNEĞİ

Yapılacak olan analiz için kullanılan şanzıman grubu şekil 4'te görülmektedir. Bu sisteme Nastran'da hazırlanmış bir SE muhafaza modeli eklenecektir ve direngenlik matrisi bu model üzerinden tanımlanacaktır.

ŞEKİL 4: SE MUHAFAZA VE YERE SABİTLEME NOKTALARI

A

6 adet rulman içeren şanzıman grubunda muhafaza için oluşturulacak direngenlik matrisi 36x36 elemandan oluşacaktır. Direngenlik matrisinin oluşturulması için bağlantıların yapılacağı rulmanlar aşağıda yer alan sırayla eklenmiştir. Rulmanların eklenme sırası, rulmanlar için oluşturulan direngenlik matrislerinin düzenini değiştireceği için önemlidir.

- Input Shaft RH [Taper roller 32305]
- Input Shaft LH [Taper roller 30205]
- Output Shaft RH [Radial ball 6208]
- Output Shaft LH [Cyl. roller N207]
- Carrier Shaft Right Bearing [Taper roller 32911JR]
- Carrier Shaft Left Bearing [Taper roller 32010JR]

ŞEKİL 5: ANALİZİ YAPILACAK ŞANZIMAN GRUBU

ŞEKİL 6: RULMANLARIN EKLENME SIRASI

ŞEKİL 7: DİRENGENLİK MATRİSİNİN GEOMETRİSİ

Açılan şanzıman muhafazası çalışma sayfasında eklenen rulmanlar ve bağlı oldukları miller görülebilir.

ŞEKİL 8: ŞANZIMAN MUHAFAZASI ÇALIŞMA SAYFASI

Bu aşamada Nastran'da oluşturulmuş olan SE verisi içeren dosya içeri aktarılıp konumlandırılmıştır. İçeri aktarılan SE dosyasındaki veriler birimsiz olduğu için Romax'ta uygun birimlerin seçilmesi gerekmektedir. İçeri aktarılan modelin orijinal uzunluklarının bilinmesi modelin ölçeklendirilmesi için önemlidir. Aynı şekilde kullanılacak kuvvet biriminin de doğru seçilmesi oluşturulacak direngenlik matrisinin doğru şekilde hesaplanması için önemlidir.

🐻 Set Units of Fin	ite Element File	×
Unit set:	MPA (mm, N, tonne	• ~
Length unit:	mm	\sim
Force unit:	Ν	\sim
Mass unit:	tonne	\sim
Temperature unit:	К	\sim
Time:	1.0s	
2	OK Cance	ł

ŞEKİL 9: SE VERİSİ İÇİN BİRİMLERİN SEÇİLMESİ

Veri dosyasının orijinal birimlerinin bilinmemesi durumunda bir seçim yapıldıktan sonra da elde edilen sonuca bakılarak yeniden ölçeklendirme yapılabilir.

Birimler de seçildikten sonra muhafazanın konumlandırılması için açılan çalışma sayfasında eklenen SE modeli ve rulmanlar için Romax tarafından oluşturulan düğüm noktaları görülebilir. Rulmanlar ve muhafazanın doğru şekilde hizalanması bağlantıların doğru şekilde oluşturulabilmesi açısından önem taşımaktadır. Modelin hizalanması için rotasyon ve döndürme işlemleri uygulanabilir.

B Position FE Data				×
Position data using a coincident and a	Mesh Quality			
Position of point in component local coordinate system				
Romax X: 0 mm X: 0.0 mm				
Romax Y: 0 mm Y: 100 mm				
Romax Z: 0 mm Z: -200 mm				
Get Position From Part Apply Translation				
Rotate data about the coincident point				
Positive Rotation angle: 90.000 deg Negative About X About Y About Z				
Reset Rotations				
Transformations in Local Coordinate System of Component				
X Axis: (1.0, 0.0, 0.0)				
Rescale Data Display type				
C Line O Hidden				
2: Restraint case number 1				
	•			
~				
3	Cutaway	ОК	Car	ncel

ŞEKİL 10: SE MODELİNİN KONUMLANDIRILMASI

Aynı zamanda "Restraint case number 1" seçeneği işaretlenerek modelin yere bağlantısı sağlanmıştır. Bu seçeneğin işaretlenmemesi durumunda muhafazaya bağlanacak rulmanın dış bileziği (outer racing) serbestçe hareket edeceği için statik analiz başarısız olacaktır.

SE verisinin kontrolü de bu aşamada otomatik olarak gerçekleştirilecektir ancak "Mesh Quality" sekmesinden bu işlem elle de yapılabilir.

Üst kısımda yer alan uyarılar (Warnings) kalite standartlarının altında kalan elemanları raporlar. Bu kalite parametrelerinin anlamları SE paket programlarında verilmiştir.

SE modelinin yerleştirilmesinin ve SE verisinin kontrol edilmesinin ardından muhafaza ve rulmanlar arasındaki düğüm noktası bağlantıları oluşturulmalıdır. Her rulman için bağlantıların oluşturulacağı düğüm noktaları aranmalıdır. Bu menü açıldığında PCD ve genişlik değerlerinin Romax tarafından rulmanların dış bilezikleri ile muhafazayı birbirine bağlamak istediğimizi varsayarak tanımlanmış olduğu görülebilir.

Combine node groups				nected Nodes		Competry displays	Deint	Deint Line		LEdda
Romax node:			Node	Position	^	Geomea y display.	Point	Line	Polygon	Hidden
Romax node 1 - Input Sh	aft RH <housing></housing>	~	15196	(31.000, 340	. 100, -20					
Automatic search			15197	(31.000, 345	5.150, -20					
Romax position: (mm) PCD: (mm) Width: (mm) Axis direction: Estimate Connection Type: 48E2 Include FE nodes Surface Sarch criteria Search criteria Search criteria Search criteria Search criteria Search criteria	0 0 245.750 62.0 0.0 1.0 6.123234e All Remove All solid search 1.0e-2 62.000 mm	~	15198 15199 15200 15201 15202 15203 C Impor Unconner Unc	(31.000, 355 (31.000, 357, 353) (30.575, 353) (27.247, 353) (27.247, 353) (24.425, 353) rt Nod Expo cted Nodes Utst: 0 2000 3000 4000 5000	0.200, -20 0.250, -20 0.250, -20 0.250, -21 0.250, -21 0.250, -21 0.250, -21 0.250, -21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.21 0.250 0.250 0.21 0.250 0					
Width	20.000 mm		5001 to 0	6000	^ ~	۲.				

ŞEKİL 12: "EDİT NODE CONNECTIONS" PENCERESİ

Arama parametreleri belirlendikten sonra "Estimate" (seçili düğüm noktası için) veya "Estimate All" (tüm düğüm noktaları için) butonu kullanılarak bağlantı noktaları aranabilir. Bu analiz için "Estimate All" seçeneğiyle, arama kriterlerinde bir değişiklik yapılmadan bulunan düğüm noktaları ve rulman düğüm noktaları arasında RBE2 bağlantıları yapılmıştır.

Complifie node groups		152 Connected	Nodes		Geometry display:	Point	Line	Polynon	Hidder
tomax node:		Node Posi	ition ^				CH IS	i alfgan	(norse
Romax node 1 - Input Shaft	RH <housing> ~</housing>	15196 (31.	.000, 340.100, -200.0						
Automatic search		15197 (31.	.000, 345.150, -200.0						
Romax position: (mm)	0 0 245.750	15198 (31.	.000, 350.200, -200.0						
PCD: (mm)	62.0	15199 (31.	575 355 250 -205 1						
Width: (mm)	20.0	15200 (30.	316, 355, 250, -210,0						
Axis direction:	0.0 1.0 6.123234e-17	15202 (27.	.247, 355, 250, -214, 7						
		15203 (24.	425, 355.250, -219.0						
		15204 (20.	.984, 355.250, -222.8						
		15205 (16.	.932, 355.250, -225.9		1				
		<	>	ATE NO	0		Sec.	AS AL	
		Import Node	es Export Nodes	Contin C	Bass		### 1 2 240 (1)		
Estimate Estimate All	Remove	Unconnected No	odes	-					
Connection Type:			2					1	
Connection Type: RBE2	~	Nodes to List:	>					T	
Connection Type: RBE2 Include FE nodes	~	Nodes to List: 1 to 1000						ſ	
Connection Type: RBE2 Include FE nodes O Surface	~	Nodes to List: 1 to 1000 1001 to 2000	· ·					ſ	
Connection Type: ABE2 Include FE nodes O Surface All Search criteria	~	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000			((J.	ſ	
Connection Type: RBE2 Include FE nodes Surface Surface Salf Search criteria Shell search Solid	√ I search	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000						ſ	
Connection Type: RBE2 Include FE nodes O Surface All Search criteria Shell search Tolerance factor	search	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000					Ĵ	T	
Connection Type: IRGude FE nodes Surface All Search criteria Shell search Solid Tolerance factor	d search 1.0e-2	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000 5001 to 6000						T	
Connection Type: RBE2 Include FE nodes Surface All Search oriteria Shell search Solid Tolerance factor Search zone Dismether Search 2006	4 search 1.0e-2	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000 5001 to 6000					5	T	
Connection Type: 1882 Surface @ All Search criteria @ Shell search Search zone Diameter Connection Connection Diameter Search zone	d search 1.0e-2	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000 5001 to 6000	· · · · · · · · · · · · · · · · · · ·				Ŋ	T	
Connection Type: IBE2 Include FE nodes Surface Sard criteria Sard criteria Shell search Tolerance factor Search zone Diameter Elameter Carlon Carl	d search 1.0e-2 20000 mm mm	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000 5001 to 6000	×				J	T	
Connection Type: IRdude FE nodes Surface All Search criteria Shell search OSolic Oslerance factor Diameter Diameter Axis direction: 	d search 1.0e-2 22.000 mm	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000 5001 to 6000	×				j	T	
Connection Type: Include FE nodes Surface (a) All Search criteria (a) Shell search () Solic Tolerance factor Search zone Diameter (c) Width (2) Avis direction: (***) (***)	Jsearch 1.0e-2 52.000 mm 50.000 mm	Nodes to List: 1 to 1000 1001 to 2000 2001 to 3000 3001 to 4000 4001 to 5000 5001 to 6000					J	T	

ŞEKİL 13: BAĞLANMIŞ OLAN DÜĞÜM NOKTALARI

Muhafazanın materyali de "Standard: Die Cast Magnesium Alloy" olarak belirlenmiştir.

	Finite	e Element Material		×
6		This will modify all the component.	materials defined in the finite ele	ment
	9	FE Material ID:	1	\sim
M	lateria	al details		
	Mater	ial		
	Name	e:	ID 1	\sim
	Mate	rial Type:	Isotropic	
	Your	igs modulus: (MPa)	45000.000000	
	Dens	ity (kg/m^3)	1810.000	
	Poiss	on's ratio:	0.35	
	Coef	f. expansion: (um/mC)	25.000	
	Mate	rial type	Finite Element	
				~
P-				
Se	elect m	aterial: Standard:Die	Cast Magnesium Alloy	~
	5		OK	Cancel
2	Ŷ		UK	Cancel

ŞEKİL 14: MUHAFAZA MATERYALİNİN SEÇİLMESİ

Materyalin seçilmesinin ardından indirgenme işlemi yapılmış ve sistem analize hazır hale gelmiştir. Analizi yapılacak çalışma koşulları şekil 15'te görülebilir. Bu aşamada statik analizler koşturulmuş ve SE modelinin çözümüne geçilmiştir.

			Power Input			Power Out				
Name	Duration (hrs)	Temperature (C)	Speed (rpm)	Torque (Nm)	Power (kW)	Speed (rpm)	Torque (Nm)	Power (kW)	1st Gear Synchro	2nd Gear Synch
First speed 100%	4,0000	70,000	3000	400,000000	125,6637				~	×
First Speed 20%	5,0000	70,000	3000	80,000000	25,1327				~	×
First Speed 40%	10,0000	70,000	3000	160,000000	50,2655				~	×
First Speed 60%	15,0000	70,000	3000	240,000000	75,3982				1	×
First Speed 80%	20,0000	70,000	3000	320,000000	100,5310				1	×
Second speed 100%	4,0000	70,000	3000	400,000000	125,6637	-1174	1022, 182785	-125,6637	×	-
Second speed 20%	5,0000	70,000	3000	80,000000	25,1327				×	-
Second speed 40%	10,0000	70,000	3000	160,000000	50,2655				×	-
Second speed 60%	15,0000	70,000	3000	240,000000	75,3982				×	1
Second speed 80%	20,0000	70,000	3000	320,000000	100,5310				×	1
0									OK	Cancel

ŞEKİL 15: ANALİZİ YAPILACAK ÇALIŞMA KOŞULLARI

ŞEKİL 16: SE MODELİNİN STATİK ANALİZİNİN YAPILMASI

Çözümün "Second Speed 100%" yükleme koşulu için tamamlanmasının ardından muhafazada oluşan deplasmanlar şekil 17'de görülebilir. Çözüm, muhafaza üzerindeki maksimum deplasman değeri 58.51 µm olarak sonuçlanmıştır.

ŞEKİL 17: MUHAFAZADA OLUŞAN DEPLASMANLAR ("SECOND SPEED 100%" YÜKLEME KOŞULU)

Muhafazada oluşan deplasmanlar şanzıman grubunda oluşan deplasmanlara oranla küçük olduğu için konturun maksimum değeri muhafazanın maksimum deplasman değeri olarak seçilerek şekil 18'de sistemin tamamına ait deplasmanlar gösterilmiştir.

ŞEKİL 18: SİSTEMİN TAMAMINDA OLUŞAN DEPLASMANLAR ("SECOND SPEED 100%" YÜKLEME KOŞULU)

MUHAFAZANIN ETKİSİNİN İNCELENMESİ

Bu kısımda muhafazanın rijit olmayan bir eleman olarak modellenmesinin sonuçlara olan etkisi incelenmiştir. İlk olarak rulmanlardaki relatif hizalama hataları (misalignment), rijit muhafaza kullanılan durumla tablo 1'de karşılaştırılmıştır.

Bulman	Relatif Hizalama Hataları, Radyal Büyüklük					
Kuiman	Rijit Muhafaza	Esnek Muhafaza				
Input Shaft LH	0,431	0,636				
Input Shaft RH	0,772	0,732				
Output Shaft LH	0,435	0,193				
Output Shaft RH	0,198	0,466				
Carrier LH	0,119	0,046				
Carrier RH	0,082	0,038				

TABLO 1: RULMAN RELATIF HIZALAMA HATALARI ("SECOND SPEED 100%" YÜKLEME KOŞULU)

Tablodan da görülebileceği üzere esnek bir muhafaza kullanımı relatif hizalama hatalarını bazı rulmanlarda artırırken bazılarında azaltmıştır. Bu da muhafazanın sistem üzerindeki etkisini bir analiz yapmadan tahmin etmenin kolay olmadığını gösterir.

ŞEKİL 19: RELATİF HİZALAMA HATALARININ KARŞILAŞTIRILMASI ("SECOND SPEED 100%" YÜKLEME KOŞULU)

Rulman hasarlarının "ISO/TS 16281" standartlarına göre hasar hesaplamaları da tüm yükleme durumları için hesaplanmış ve tablo 2'de karşılaştırılmıştır.

Bulman	Rulman Hasarları (ISO 281 / TS 16281 (%))					
Kuiman	Rijit Muhafaza	Esnek Muhafaza				
Input Shaft LH	13,9	26,1				
Input Shaft RH	1,9	1,8				
Output Shaft LH	262,4	40,6				
Output Shaft RH	0,105	0,502				
Carrier LH	7,47E-04	6,76E-06				
Carrier RH	8,27E-06	1,52E-07				

TABLO 2: RULMAN HASARLARININ KARŞILAŞTIRILMASI

Rulman relatif hizalama hatalarına benzer şekilde rulman hasar hesaplamaları da bazı rulmanlarda artış gösterirken diğer rulmanlarda azalış göstermiştir.

Rulmanların hasar ve hizalama hatası karşılaştırmalarından sonra dişlilerin de hizalama hataları tablo 3'te ve şekil 20'de karşılaştırılmıştır.

Second Speed Disli	Hizalama H	Fork	
Second Speed Dişir	Rijit Muhafaza	Esnek Muhafaza	FAIK
Second Speed 20%	7,76	8,04	0,28
Second Speed 40%	6,22	6,29	0,07
Second Speed 60%	4,7	4,53	-0,17
Second Speed 80%	3,21	2,78	-0,43
Second Speed 100%	1,72	1,03	-0,69

TABLO 3: DİŞLİ HİZALAMA HATALARININ KARŞILAŞTIRILMASI

ŞEKİL 20: DİŞLİ HİZALAMA HATALARININ KARŞILAŞTIRILMASI

Dişli hizalama hatalarının karşılaştırılmasında da önceki karşılaştırmalara benzer şekilde dişli hizalama hataları bazen artış bazen ise azalış gösterebilir. Muhafazanın sistem üzerindeki etkisini bu sebeple tahmin etmek zordur. Rulman dış bileziklerinin rijit bir muhafazaya bağlı olarak modellenmesi yerine esnek bir muhafazaya bağlı olarak modellenmesi, rulman dış bileziğinin deplasmanlarını, mil ve rulman deplasmanlarının çaprazlama olarak birbirine etkilerini de analizin içerisine kattığı için daha doğru bir analiz sonucu elde etmemizi sağlar.

SONUÇ

Bu çalışmada güç aktarma sistemlerinin modellemesi yapılırken modele esnek muhafaza modeli eklenirken dikkat edilmesi gerekenlerden bahsedilmiş ve esnek muhafazanın sonuçlar üzerindeki etkisi incelenmiştir. Şanzıman grupları üzerinde analiz yapılırken esnek muhafazanın sistem üzerinde oluşturduğu etkilerin hesaba katılması gerçekçi bir analiz için gereklidir. Muhafazanın esnekliği rulman hizalama hataları, rulman ömürleri ve dişli hizalama hatalarının daha doğru şekilde hesaplanması için önem taşır.

REFERANSLAR

I. Romax Spectrum Tutorial Pack, FE1: Housing Influence

www.bias.com.tr