

MSC NASTRAN İLE RESTART İŞLEMLERİ

HAZIRLAYAN

Didem BAYKAL Kıdemli Yapısal Analiz Lider Mühendis

Tarih: 25.07.2022

RESTART NEDİR?

Daha önce çözümü yapılan analiz modellerinde değiştirmek, eklemek veya çıkarmak istenilen bazı parametreler olabilir. MSC Nastran Restart işlemi, çözümü yapılmış olan mevcut modeldeki bazı değerleri tekrar tekrar hesaplamaya gerek bırakmadan, bu değerleri yeni analiz modelinde kullanmaya imkan sağlar. Böylece revize edilen analiz modelinin bir önceki analizde hesaplanan değerleri kullanmasını sağlayarak daha kısa sürede yeni analiz modelinin çözümünü elde etmeyi sağlar. Bu işlem aynı zamanda fazla lisans kullanımını da önleyerek kullanıcıya fayda sağlamaktadır.

RESTART NEDEN ve NASIL KULLANILIR?

Restart ile yapılan analizlerde Nastran, tüm hesaplamaları en baştan yapmak yerine sadece gerekli gördüğü hesaplamaları yapar. Modelde ek bir output ihtiyacı, modele yeni bir senaryo ekleme, analiz tipini değiştirme gibi değişiklikler yapılabilmektedir. Örnek olarak bir modelde "Modal Analiz" (SOL 103) yapıldığını ve sonraki adım olarak aynı modelin "Modal Frekans Cevap Analizi" (SOL 111)' in yapılacağını varsayalım. Bu analiz için Nastran Restart işlemi kullanıldığında SOL 103 analiz dosyasında hesaplanan doğal frekanslar tekrar hesaplanmaz ve yeni yapılacak analiz olan SOL 111'de daha önce hesaplanan bu değerler kullanılabilmektedir.

Restart'ın kullanılamayacağı bazı durumlar:

- Eleman katılık veya kütle matrisinin değişmesi (kalınlıklar, 1D elemanların kesit alanları, nodeların koordinatları,..)
- Sınır koşullarının değişmesi (SPC ve MPC'lerin değişmesi)
- Analiz tipinde ciddi bir değişiklik olması durumu (Statik Analiz'in Modal Analiz'e çevrilmesi veya Modal Transient Analizi'nin Direct Transient Analizi'ne çevrilmesi gibi)

Dikkat edilmesi gereken ilk adım olarak, önceki sonuç dosyaları sonraki analiz için kullanılacağından MASTER/DBALL dosyaları <u>silinmemelidir</u>. Görsel 1'de gösterilen ekranda "scr=no" yazılarak bu durum sağlanabilir. Yapılan bu ilk analiz, *"Initial (Coldstart) Run"* olarak da isimlendirilmektedir.

www.bias.com.tr

MSC/NASTRAN Command Information	×
MSC/NASTRAN Input File	
h\FE_model\rev01\dbaykal\kontrol_analizi\Modal_Analysis3.bdf	File
Uptional Keywords	
50-10	
Run Cancel	Clear

Görsel 1 – Nastran'ı Çalıştırma Ekranı

Görsel 2'de "SOL103_run.bdf" (Modal Analiz) inputunun MSC Nastran'da (scr=no ile) çözülmesiyle elde edilen çıktılar yer almaktadır. Restart işlemi için MASTER dosyasının kullanımı/saklanması gerekli, DBALL dosyasının kullanımı ise opsiyoneldir.

Name	Туре	Size
SOL103_run.bdf	BDF File	271 KB
SOL103_run.DBALL	DBALL File	271,616 KB
SOL103_run.f04	F04 File	146 KB
SOL103_run.f06	F06 File	805 KB
SOL103_run.IFPDAT	IFPDAT File	3,872 KB
SOL103_run.log	Text Document	10 KB
SOL103_run.MASTER	MASTER File	20,224 KB

Görsel 2 – SOL 103 Analiz Çıktıları

Restart işlemi için izlenecek adımlar Görsel 3'te özet olarak verilmiştir. Nastran'da restart işlemi için önceki dosyaların isimleri mutlaka ilgili satırda belirtilmelidir (ASSIGN kartı kullanılacaktır). Son olarak RESTART kartı mutlaka eklenmelidir.

1. Adım: İlk analizin sonuçlarını silmeyiniz. 2. Adım: Sonraki analiz için bir önceki sonuç dosyasını referans gösteriniz. 3. Adım: Yeni analiz için RESTART'ta kullanılacak gerekli Nastran kartlarını tanımlayınız.

Görsel 3 – Restart Temel İşlem Adımları

ÖRNEK 1

Görsel 4'te gösterilen Statik Analiz (SOL 101) input dosyasında değiştirilmek istenen kısım, çıktı isterleriyle ilgilidir. "Yer değiştirme" yerine "Kuvvet" çıktısı istenecektir. Bunun için tüm analizi tekrar koşturmak yerine Restart işlemi ile output için tanımlanan kartlar değişecektir.

Example_01.bdf * ×							. ×
\$							
Ş							
SOL 101							
CEND							
TITLE=Example	e 01						
LOAD = 100							
DISPLACEMENT	(PLOT) =ALL						
ş							
ş							
BEGIN BULK							
PSHELL 2	1	5. 1	L		1		
\$ Pset: "Sec	tion_1" will	be import	ted as:	"pshell.	.2"		
CQUAD4 1	2	214 2	213	277	215	0.	0.
CQUAD4 2	2	215 2	277	278	216	0.	0.
CQUAD4 3	2	216 2	278	279	217	0.	0.
Ş							
Ş							
ENDDATA							

Görsel 4 – İlk Analiz için Dosya İçeriği

Görsel 5'te bu analiz için oluşturulan bir restart input dosyası verilmiştir. "ASSIGN" kartı ile ilk analizde elde edilen "Example_01.MASTER" dosyası referans gösterilmektedir. Bu satırda dosya isminden sonra "OLD" kelimesi eklenerek mevcut MASTER dosyasının saklanması sağlanır. Sonraki satırda ise "RESTART" kartı tanımlanmıştır. Analiz sonunda yerdeğiştirmeler istenmediğinden o satırın başına "\$" işareti eklenerek inaktif duruma getirilmiştir. Yeni çıktı isteri olan "FORCE" kartı eklenmiştir. Model içeriğinde bir değişiklik olmadığından BEGIN BULK bölümü boş bırakılmıştır.

Görsel 5 – Örnek 1 için Restart Analizi Dosya İçeriği

ÖRNEK 2

Bir dinamik analiz yaparken ilk ve temel olarak doğal frekansların hesaplanması gerekmektedir. Dolayısıyla örneğin Modal Analiz'den Modal Frekans Cevap Analizi'ne geçiş yaparken "Read-Only Restart" kullanılabilir. Bu şekilde orijinal model dosyasını kullanarak Restart Run'ı gerçekleştirecektir.

Dikkat edilmesi gereken noktalardan biri "RESTART LOGICAL" komutunun kullanılmasıdır. Bu komut için herhangi bir isim atanabilir, aşağıdaki örnekte "MODES" ismi kullanılmıştır. Kullanılan ismin "ASSIGN" satırındaki isimle aynı olmasına da ayrıca dikkat edilmesi gerekir.

_		_
Γ	INIT MASTER(S)	-
l	ASSIGN MODES='restart103_file.master',old	~
l	RESTART LOGICAL = MODES	
l	SOL 111	
l	CEND	
l	ECHO = NONE	
l	\$RIGID = LAGRAN	
l	SUBCASE 1	
l	SUBTITLE=restart_soll11	
l	METHOD = 1	
l	FREQUENCY = 1	
l	BCONTACT = 1	
l	SPC = 2	
l	DLOAD = 3	
l	ACCELERATION (PLOT) = ALL	
l	STRESS (PLOT) =ALL	
l	SDAMPING = 1	
l	LOADSET = 9	
	\$ Direct Text Input	
I	BEGIN BULK	

Görsel 6 – Örnek 2 için Restart Analizi Dosya İçeriği

Modal Frekans Cevap Analizi için **gerekli olan ek parametreler** (çalışma frekans aralığı, dinamik yük tablosu,...gibi) Görsel 7' de gösterildiği gibi bdf'te BULK DATA bölümüne eklenmelidir.

BEGIN BU	JLK						
MDLPRM, H	DF5.0						
S End En	bedded	Fatigue	Parameter	s & Load	Seguen	ices	
FREQL	1	5.	5.	399	•		
FREQ4	1	5.	55000.	.1	3		
FREQ3	1	5.	55000.	LINEAR	3	1.	
TABDMP1	1	CRIT					
	5.	.05	55000.	.05	ENDT		
RLOAD1	5	6			1		ACCH
LSEQ	9	6	7				
SPCD	7	1009	3	1.			
DLOAD	3	1.	1.	5			
\$ Refere	nced Dy	namic Lo	ad Tables				
S Dunami	c Load	Table :	table				
TABLED1	1						
	5.	9806.	55000.	9806.	ENDT		
\$ Refere	nced Co	ordinate	Frames				
Ş							
Ş							
ENDDATA	90cd637	f					

Görsel 7 – Restart Analizi için Dosya İçeriği

ANALİZ SÜRELERİ

Görsel 8'de verilen her iki f04 dosyasındaki analiz süreleri incelendiğinde "SOL111.bdf" modelinin çözüm süresinin (2:20) 140 saniye, "restart111.bdf" modelinin çözüm süresinin (0:36) 36 saniye olduğu görülmektedir. Restart işlemi ile yapılan ("restart111.bdf" modeli) analizde daha önce yapılan SOL 103 (Modal Analiz) sonuçlarında hesaplanan doğal frekanslar kullanılmıştır. Süreler arasında yaklaşık 4 katı kadar fark olduğu ve analiz süresiyle ilgili yaklaşık %74' lük bir kazanç olduğu görülmektedir.

11:40:30	2:20	7084.0	0.0	137.7	0.0	PRTSUM	74	DBDICT	BEGN
11:40:30	2:20	7085.0	1.0	137.7	0.0	PRTSUM	75	PRTPARM	BEGN
11:40:30	2:20	7085.0	0.0	137.7	0.0	SEMFREQ	1866	MSGHAN	BEGN
11.40.20	2.20	2005 0	0.0	127 7	0.0	SEMEREO	1867	FXTT	BEGN
*** SUMMARY	OF COMPO	NENT SERVICES	USAGE ACTIV	137.7 VITY ***		SERIALY	1007		
*** SUMMARY	OF COMPO	VOUS.U	USAGE ACTIV	137.7 VITY ***		Shirkby	1007		
*** SUMMARY *** SUMMARY tart111.f04 × s 11:37:06	OF COMPOI	NENT SERVICES	USAGE ACTIV	137.7 VITY *** 35.8	0.0	PRTSUM	75	PRTPARM	BEGI
tart111.f04 × s 11:37:06 11:37:06	OF COMPOI 01111.f04 0:36 0:36	1801.0 1801.0	0.0 USAGE ACTIV 1.0 0.0	35.8 35.8	0.0	PRTSUM	75 1866	PRTPARM	BEGI

Görsel 8 – Restart İşleminin Analiz Süresine Etkisi

REFERANSLAR

MSC Nastran QRG, Chapter 2, File Management Section, RESTART

